OMX-0407, a highly potent SIK3 inhibitor, sensitizes tumor cells to cell death and eradicates immune-checkpoint resistant tumors synergistically in combination with PD-1 inhibition

Introduction

Using the 10Tage screening platform, salt-inducible kinase 3 (SIK3) was recently identified as a novel epigenetic modulator in cancer therapy. SIK3, a serine/threonine kinase of the AMP-activated protein kinase (AMPK) family, is known for regulating the NF-κB-driven gene landscape through phosphorylation of class IIa histone deacetylases (HDACs), causing the tumor to evade death receptor-mediated killing.

Here we report that OMX-0407, an orally active, single-digit nanomolar inhibitor of SIK3 ablates downstream pro-survival signaling of the SIK3 HDAC4/5 NF-κB axis and potentiates caspase-mediated necroptotic death in murine and human tumor cell lines. OMX-0407 dose-dependent suppression of intratumoral NF-κB activity was shown in vitro and in vivo with an MC38 NF-κB-luc reporter cell line. OMX-0407 monotherapy results in significant tumor growth inhibition (TGI) as well as prolonged survival in the high-immune-infiltrated syngeneic mouse colorectal carcinoma model MC38. Besides its direct inhibitory effects on cancer cells, OMX-0407 reprograms the tumor microenvironment (TME) by strongly decreasing regulatory T cells (Treg) and M2-polarized macrophages in the tumor bed, while not affecting the peripheral T-cell compartment. Using immune checkpoint inhibitor resistant breast (EMT6) and lung (KLN205) cancer models, we demonstrate that OMX-0407 and anti-PD-1 therapy act synergistically by combining the sensitization towards cell death with a reduction in immunosuppressive TME and an increase in cytotoxic T-cell activity. OMX-0407 is an outstanding therapeutic option to overcome TME-induced immune evasion and anti-PD-1 resistance, which will be clinically investigated in the near future.

Results

SIK3 inhibits death receptor mediated apoptosis in tumor cells

A) SIK3-KO enhances death receptor mediated tumor cell death

Conclusion

OMX-0407 is a strong inhibitor of SIK3 kinase that inhibits the phosphorylation of HDAC4/5 in a dose-dependent manner and thereby abrogates the nuclear activity of pro-tumorigenic transcription factor NF-κB in tumor cells both in vitro and in vivo.

Downregulation of the SIK3-HDAC4/5-NF-κB pathway with OMX-0407 potentiates apoptosis by death receptor ligands, such as TRAIL or TNF, in vitro in tumor cell lines of different origin.

Pharmacokinetics of OMX-0407 in tumor tissue correlates with intra-tumoral abrogation of the HDAC4/5-NF-κB axis.

OMX-0407 shows strong efficacy as monotherapy in the syngeneic tumor model MC38 with a marked repolarization of the tumor microenvironment towards an anti-tumor immune profile.

OMX-0407 acts synergistically with PD-1 blockade in immune checkpoint inhibitor-resistant syngeneic breast and lung cancer models.

The ability of OMX-0407 to repolarize the tumor microenvironment and sensitize tumor cells to death receptor-mediated apoptosis, suggests it as a great potential for combination with high tumor immune model resistance, as monotherapy and in combination with anti-PD-1/PD-L1 immune checkpoint blockade.

OMX-0407 will enter clinical trials in patients with advanced cancer in 2022.

OMX-0407 inhibits SIK3-triggered phosphorylation of HDAC4/5 and the associated transcriptional activity of NF-κB

A) OMX-0407 demonstrates dose-dependent depletion of histone deacetylase 4/5.

B) OMX-0407 potentiates TNF-mediated activity of NF-κB pathway.

C) OMX-0407 inhibits transcriptional activity of NF-κB in MC38 tumor cells.

OMX-0407 reprograms the tumor microenvironment and shows strong anti-tumor efficacy in monotherapy and in combination with PD-1 blockade

A) Strong anti-tumor efficacy and prolonged survival by OMX-0407 therapy

B) Repolarization toward an anti-tumor immune environment

C) Combination therapy of OMX-0407 and PD-1 blockade acts synergistically in the immune-excluded breast cancer model EMT6 and the immune-excluded lung cancer model

Statistical information

Statistical analysis was performed using GraphPad Prism 8.0. For survival curves, Kaplan-Meier tests were used with the log-rank (Mantel-Cox) test for multiple comparisons. Significant differences were set at *p < 0.05, **p < 0.01, ***p < 0.001 compared with DMSO-ctrl.

A) Tumor growth inhibition/remission in the immune-excluded breast cancer model EMT6 and the immune-excluded lung cancer model

A) Strong anti-tumor efficacy and prolonged survival by OMX-0407 therapy

B) Repolarization toward an anti-tumor immune environment

Authors and affiliations

Ilena-Petra Mäseri, Christina Hartl, Thomas Michels, Ronny Milde, Vanessa Klein, Michael Maradit Philipp Becklovitz, Niall Grundon, Murray Uyl, Harvey Lofler, and Stefan Reissig

OmX Therapeutics, Marburg, Germany.

Regensburg Center for Immunological Research (RCR), Regensburg, Germany.